If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2(x^2)+5x-1=0
a = 2; b = 5; c = -1;
Δ = b2-4ac
Δ = 52-4·2·(-1)
Δ = 33
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{33}}{2*2}=\frac{-5-\sqrt{33}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{33}}{2*2}=\frac{-5+\sqrt{33}}{4} $
| 13v+26=26 | | 0=(y^2)-9y+18 | | -10-5x=7x+38 | | 5t=2t-6 | | 0=(w^2)+6w+5 | | x+9+8=15 | | 5(3x+8)=16-3(x-8) | | 6x+7-4x=31 | | 0=(u^2)-6u+9 | | 0=(u^2)-6u-7 | | 4/2x-1=-2/7 | | (3/5)(c)=2c-7 | | -2(u+7)(-u+5)=0 | | 9^x=25 | | -7x+3/4=-53/4 | | (5v+2)(8-v)=0 | | 3(0)-x=6 | | (4y+3)(1-y)=0 | | (u-5)(u-9)=0 | | X=1+(0,5x) | | 0=(3+y)(5y+4) | | 6(7y+2)=12 | | X+0.18x=25000 | | x(4.8-2)=4.9x-2 | | 2x+4/3x+4=3 | | 0.0001=10x | | 7(y+3)=3y+37 | | 0=(v+1)(v+5) | | 3a=2.5(8 | | 1000000=10x | | -6/5x-1/3=1/9 | | Y^2+13y^2+36=0 |